Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China

نویسندگان

  • Xinghua Sui
  • Guangsheng Zhou
  • Qianlai Zhuang
چکیده

Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951–2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 Tg C, ranging from -80.5 to 79.6 Tg C yr. Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 Tg C which 14.2 Tg C was stored in vegetation and 42.4 Tg C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes. Climatic Change (2013) 117:259–272 DOI 10.1007/s10584-012-0533-2 Electronic supplementary material The online version of this article (doi:10.1007/s10584-012-0533-2) contains supplementary material, which is available to authorized users. X. Sui : G. Zhou (*) State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China e-mail: [email protected] G. Zhou Chinese Academy of Meteorological Sciences, Beijing 100081, China Q. Zhuang Department of Earth and Atmospheric Sciences and Department of Agronomy, Purdue University, West Lafayette, IN 47906, USA X. Sui Graduate School of Chinese Academy of Sciences, Beijing 100049, China

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China

[1] We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China’s terrestrial ecosystems for the period 1961–2000 with a processbased Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The si...

متن کامل

Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2

[1] Isoprenoids (isoprene and monoterpenes) are the most dominant class of biogenic volatile organic compounds (BVOCs) and have been shown to significantly affect global tropospheric chemistry and composition, climate, and the global carbon cycle. In this study we assess the sensitivity of biogenic isoprene and monoterpene emissions to combined and isolated fluctuations in observed global clima...

متن کامل

Isolating and Quantifying the Effects of Climate and CO2 Changes (1980–2014) on the Net Primary Productivity in Arid and Semiarid China

Although the net primary productivity (NPP) of arid/semiarid ecosystem is generally thought to be controlled by precipitation, other factors like CO2 fertilization effect and temperature change may also have important impacts, especially in the cold temperate areas of the northern China, where significant warming was reported in the recent decades. However, the impacts of climate and atmospheri...

متن کامل

Net primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and atmospheric CO2 concentration

We used the Terrestrial Ecosystem Model (TEM, version 4.0) to estimate net primary production (NPP) in China for contemporary climate and NPP responses to elevated CO2 and climate changes projected by three atmospheric general circulation models (GCMs): Goddard Institute for Space Studies (GISS), Geophysical Fluid Dynamic Laboratory (GFDL) and Oregon State University (OSU). For contemporary cli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013